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SUMMARY 

Simplified expressions are derived for three of the more commonly used 

force-deflection characteristics of aircraft tires in terms of tire size and 

inflation pressure. These are the vertical load-vertical deflection, side 

load-side deflection and torsional moment-angle of twist relationships. The 

derivations are based on the concept of treating the tire as a pressurized 

torua of circular cross-section with no bending rigidity, and on the concept 

of treating the outer portion of the tire, or "running band" as a string on an 

elastic foundation. Predictions from such simplified theories are compared 

with extensive experimental data obtained by N.A.C.A. in 1953, and agreement 

is generally good althollgh far from perfect. 

The primary useflllness of such expressions probably Lies in the area of 

preliminary design., where extensive parametric studies are often required to 

optimize response under many different input conditions. They may also be of 

use in ground vibration studies of aircraft. 
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ANALYSIS 

During deformation of a pneumatic tire two kinds of forces act. The first 

of these is set up by bending of the tire carcass, while the second comes about 

due to deformation of the carcass walls, which themselves carry large membrane 

forces due to inflation pressure. In an aircraft tire the latter type of 

force is predominant in many situations because the aircraft tire usually op- 

erates at a rather high inflation pressure, so that these membrane forces are 

much larger than those generated by carcass bending. 

Examination of toroidal shell equilibrium conditions shows that to a 

great extent the membrane forces due to inflation are statically determinate 

and can be calculated, or at least estimated, independkntly of tire structure 

or wall thickness. This leads to the conclusion that tire load-deflection re- 

lations which depend primarily on membrane forces might very well be calculated 

analytically. Of course, such calculations would not be valid for cases where 

the inflation pressure became small enough so that membrane effects were small 

compared to bending. 

Examination of the forces involved in tire deformations showed that three 

common cases might be treated by such an approach: 

a. Vertical load-vertical deflection relations 
b. Side load-side deflection relations 
c. Torsional moment-angle of twist relations. 

In all of these it is felt that inflation causes membrane forces which 

in turn cause the major part of the spring-deflection relation. 
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Considerable use has been made of models for predicting the steering 

characteristics of pneumatic tires. The most widely used of these models have 

been the string on the elastic foundation and the beam on the elastic founda- 

tion. In both of these the tread region is imagined to be the string or beam, 

while the sidewall region makes up the elastic foundation. One of the short- 

comings of such models has been the difficulty of estimating the magnitude of 

the elastic foundation constant. A method for overcoming this difficulty is 

presented in this report. 

Perhaps the most common spring characteristic of a pneumatic aircraft 

tire is its vertical deflection under load. This deformation process may be 

approximated in a very rough way by a geometric calculation of the contact 

area of a tire with a flat surface. Referring to Fig. 1, which is a side view 

'Ground Plane 

Fig. 1. Side view of deformed tire. 

of a tire, it is seen that the vertical deflection Av and contact patch length 

L are related by the parameter 8: 

Av = 1-case) 

3 



L 
d2: 

sine (2) 

For relatively small deflections Av compared with diameter d, one may 

write 
Q2 d 

Av = --2 
(1) ' 

2 

from which 236 
A,,= k (3) 

Aircraft tires are typically molded without the heavy, buttress-like 

shoulder structure used in automotive and truck tires. Their cross-sectional 

shape is closer to -a circle. On this basis, relations similar to Eqs. (I-), 

(2) and (3) may be d eveloped for a cross-section of a typical aircraft tire, 

as shown in Fig. 2. Here, the vertical deflection and contact patch width 

W' 

Fig. 2. Cross section of aircraft tire. 

*Tests and more refined mathematical models both show that the contact patch 
length is only 75% to 85$ of the geometric intersection length used here. 
This will be disregarded in these approximations. 
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are related through the parameter B: 

AV = ri(l-cosp) (4) 

b 
-- EL *sir@ 
2rl 

(5) 

If Av is small compared with rl, Eqs. (4) and (5) may be simplified and 

comb,ined as before to give 

P2 Av N r12 (4)’ 

and 

b - E f3 
2rl 

b2 
Av = 6 

(5)’ 

(6) 

Next, one may note that an aircraft tire is usually rather highly in- 

flated. The shell membrane effects become important compared with the shell 

bending effecta. Under these circumstances the tire shape approximates, but 

does not reach, a circle. Hence one further approximation may be made re- 

lating the section width w of Fig. 2 to the radius of curvature rl. in the 

W ri z. -2 (7) 

and ccmbining this with Eq. (6) gives 

(8) 

The length of the contact patch is obtainable from Eq. (3), and its 

width from Eq, (8). Tests show that the contact patch in a tire of typical 

aircraft construction is approximately elliptical in shape with a pressure 

distribution which varies but whose average value is close to the inflation 

5 
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pressure po. Hence, the vertical load P may be approximated by 

P 2: Lb 
flz2po or 

(9) 

This gives a relation between total vertical load, inflation pressure po and 

deflection Av such that 

(a) Load P is directly proportionalto deflection Av and to inflation 
pressure p. 

(b) Load P is directly proportionalto the carcass section width w and 
tire diameter d, each to the one-half power. 

Another important property of a pneumatic aircraft tire is its lateral, 

or side, force-deflection relation. This particular elastic characteristic 

has had extensive treatment in the literature since it is closely related to 

the cornering force developed by a tire while running at a slip angle. Dis- 

1 
cussions of some aspects of the lateral stiffness have been given by Andrews, 

Saito2 and Rotta.3 A review of much of this work is given in the excellent 

summary of Frank. 4 There, it was concluded that for tires of radial or belted 

construction, or for tires with very heavy tread sections, the beam on the 

elastic foundation is probably the best model. For tires of bias ply con- 

struction, such as an aircraft tire, the string on the elastic foundation gives 

good results, and that type of model will be adopted here. 

It is first necessary to develop a means of relating the tire parameters 

to the lateral elastic foundation modulus, or stiffness, required in the 

theory of a string on an elastic foundation. In order to do this the tire 

cross- section will be idealized rather drastically, as shown in Fig. 3a and 3b. 

6 



A 

1 
t 

- t- - - 

Fig. 3. Idealized section of aircraft tire. 

The assumed lateral deflection AH is shown by the dashed lines of Fig. 3b. 
C-J 

If a unit width of the tire, as shown in Fig. 3b is considered a pin-jointed 

structure, then it may be analyzed in its assumed deformed condition as shown 

in Fig. 4, under the action of inflation pressure p. and an assumed side force 

Q. 

- Q1 
POW 

2 

Fig. 4. Free body diagram of deformed tire. 
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For the right hand sidewall, taking,moments about OR gives 

Q1 H cos Q = y H sin a! + p. I-I l g 

For small 0, 

H 
Q1 ", w AH 

PO 2 + PO 2 H 

For the left hand sidewall, taking moments about OL gives 

-Q2 H cos QI + y Hsina = poH=g 

-Q2 
H w AH 

"Po2-PoF'H 

The total side force Q is given by 

wAH Q = 41+&z = PO - 
H 

pow 
Q/AH = y- = KL, 

(10) 

(11) 

(12) 

where KL is a lateral foundation modulus for the string. The string itself 

may be visualized as the upper portion of the pin-jointed truss approximation 

of Fig. 4. This band of width w may be assumed to carry the entire pressure 

load. From conventional pressure vessel theory, the band tension T is given 

d T = wpo~ (13) 

It is difficult to check either the lateral spring rate KL or the band 

tension T, as given by Eqs. (12) and (13), directly. For example, Thorsen5 

obtains for the lateral spring rate KL the expression given in Eq. (12) mul- 

tiplied by x/4, while Stevens6 introduces a weighted band tension proportional 

to the distance from the rim. Some clarification of the general accuracy of 
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Eqs. (12) and (13) can be obtained by a simple experiment in which a tire of 

negligible carcass stiffness is loaded laterally at a point. The string on 

the elastic foundation may be used as a basic model for the force-deflection 

relation. 

The equation of static equilibrium for the string on elastic foundation 

is 

&-Ku 
dx" L 

= 0 (14) 

from which, letting h2 = KL/T 

-Ax AX 
U = Ae +Be . (15) 

Considering the tire diameter large compared with the patch length, one ob- 

tains B = 0 from which 

U = Aeshx 

But (u)~=o = AH is a boundary condition, so that 

U = AI[~-‘~ 

du - = Slope = A&e 
4.x 

dx 

and the force component perpendicular to the string is given by 

S = 2T &l 

0 ax 
x=0 

as shown in Fig. 5. Using Eqs. (13) and (17), 

(16) 

(17) 

Fig. 5. String under point load. 
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one obtains 

(18) 

for a concentrated load. 

Experiments were conducted on a tire in which both the tread and much of 

the carcass had been stripped away, leaving a thin web or network of cords. 

This is shown in Fig. 6. 

Fig. 6. Tire with negligible bending stiffness and point load. 

In this same photograph a short length of twisted steel cable may be seen, to 

which a small weight-pan is wired. In addition, a bolt is firmly attached to 

the web of the carcass and acts as a reference point for the dial gauge. 

Figure 7 shows a somewhat larger overall view of this tire in the loaded 

condition. In spite of the length of cable used, the load is applied in al- 

most a concentrated fashion. The measured spring rate may be compared with 



I 
-- - 

Fig. 7. ikaded tire with negligible bending stiffness. 

that given by Eg. (18), -and the results are given below in Table I. 

TABLE I 

Inflation 
Pressure 

psi 
Measured 
Spring Rate 

lbs/in 
Calculated 

Spring 
Rate 

lbs/in 

5 9 13 

161 234 334 

108 195 280 



While calculations and measurement do not agree very well here, they at 

least indicate that the lateral spring rate should probably not be reduced be- 

low the value given by Eq. (12), and that the effective band tension should 

probably not be reduced below the value given by Eq. (13), since in either event 

the calculated values would deviate even more from the measured ones. Recog- 

nizing that Eqs. (12) and (13) are relatively crude expressions anyway, they 

will be retained in that form without further modification. 

The concept of the string on the elastic foundation may be extended to 

represent the contact patch of a tire under lateral or side load. Ideally, the 

contact patch mid-line may be visualized as a straight line segment which is 

laterally displaced from the equilibrium position, as shown in Fig. 8. 

l- Contact 
Patch --I 

Fig. 8. Idealized contact patch under lateral deflection. 

In actuality the contact patch is not displaced in this way. Instead, the 

straight line segment is curved. This can be demonstrated clearly by loading 

and then laterally displacing a small inflated inner tube pressed against a 

Plexiglass plate, as shown in the photograph of Fig. 9. The center line of the 

distorted tube may be clearly seen to follow a curved path, and since the rela- 

tion between force and tire deflection involves the reduced deflections at the 

end of the contact area, it is necessary to take these into account in subsequent 

12 



Fig. 9. laterally displaced loaded inner tube. 

calculations. For this reason we adopt the distorted contact patch shown in 

Fig. 10 as a model, and introduce the reduction factor 11 to account for the dis- 
LI. 

placement of the ends relative to the center, Later on '1 will be given a 

I AH 

Contact Patch 

Fig. 10. Assumed contact patch form for lateral deflection. 

numerical value. 

In the contact patch region the pressure of contact just balances the 

vertical reactions caused by inflation which act on the sidewalls, shown in 



Fig. 4 , provided that one continues to assume a uniform pressure distribution 
. 

p. over the contact patch. Since these vertical reactions are the forces which 

help generate the lateral spring rate, their absence means that no lateral 

spring rate acts against the tread band shown in Fig. 10 in&de the contact 

patch length. It is only outside of this length that such forces act to re- 

strain the string under tension. This leads to the idea that the lateral force 

may be obtained by computing the restoring tension forces acting on the contact 

patch area, and that these tension forces are obtainable from string theory. 

A'sketch of the loaded contact patch is given in Fig. 11, 

Fig. 11. Forces acting on the contact patch. 

from which the total restoring force component perpendicular to the centerline 

is given by 

S = 2T 2h.l 

0 ax = 
2 q AHJ~T 

x=0 

Using Eqs. (12) and (13), and calling the side force S, gives 

( (B9) 

14 



From this expression, lateral spring rate may be obtained directly.' It 

is seen that side force S is 

(a) Linearly proportionalto side deflection AH 

(b) Lineajrly proportional to inflation pressure p. and to section width w 

(c) Proportional to the one-half power-of a dimensionless shape 
factor which is the ratio of tire diameter d to section height H. 

(d). Independent of vertical load or contact patch length. 

The concept of the "running band" as a string on an elastic foundation is 

also useful in defining the torsional stiffness of an aircraft tire under a 

twisting couple about an axis perpendicular to the ground plane and passing 

through the wheel centerline. Referring to Fig.12, it is seen that the band 

tensions ideally act to form a couple about the contact patch- center-point. 

Again, however, 

_ Contact 
Patch -4 

Fig. 12. Idealized contact patch under twist. 

a real tire does not act in this ideal way. Figure 13 is a photograph of the 

same inner tube used in Fig. 9, but now distorted by twisting about a central 

axis. This shows the curvature of the contact patch, and again leads to the 

concept of reducing the deflection AT of the contact patch extremity by an 



Fig. 13. Twisted loaded inner tube. 

amount 70 This is illustrated by the sketch of Fig. 14. 

I-- Contact 
Patch 

Fig. 14. Assumed contact patch form for twist. 

Using this factor, and the previous values of string tension and slope, 

on& may write an expression for the moment about point 0 as 

(20) 

16 



Using this, and Eqs. (12) and (U), one may write 

M = cp M = (iJ L2 
-Pow=J$?l 
2JF 

(21) (21) 

where AT = 11 where AT = 11 $ cp, with q as a reduction factor for deflection. $ cp, with q as a reduction factor for deflection. Recalling that Recalling that 

L' = kl Av and P = r[ Av p. G, one obtains, using rl 2: w/2, L' = kl Av and P = r[ Av p. G, one obtains, using rl 2: w/2, 

This leads to the interesting conclusions that torsional moment is 

(a) Linearly proportional to angle of twist +. 

(b) Linearly proportional to tire diameter d and to tire vertical load P. 

(c) Proportional to the square root of a dimensionless tire shape factor 
w/H, section width over section height. 

(d) Independent of inflation pressure po. 

17 



COMPARISON OF THEORY WITH EXPERIMENT 

The expressions given in Eqs. (g), (19) and (22) are only of superficial 

interest unless they agree with experiment. It is extremely fortunate that 

extensive experiments on aircraft tires have been reported by W. B. Horne, 7 of 

the National Aeronautics and Space Administration. The expressions derived 

here are compared to the data given by Horne by means of superimposing heavy 

solid lines representing theorv upon his original plots. These are shown in 

Figs. 15 through 32. In making these, measusements taken on Fig. 9 showed that 

the reduced deflection factor 11 should be chosen numerically to be approximately 

and this has been followed in these plots. 

The tires tested by Horne are shown in cross-section in Fig.15and photo- 

graphs are given in Fig. 16. The pertinent dimensions 

w = Section width 

H = Section Height 

d = Tire diameter 

are estimated from Fig. 15by measuring to the assumed location of the tire 

carcass mid-line, which is the neutral axis in bending of the tire and is 

the centroid for the membrane forces. These dimensions are listed in Table 2. 

18 



TABLE II 

TIRE SECTION DIMENSIONS IN INCHES 

Tire A B C D E 
W 12 14 12 12 8 

H 12 12 11 10 6 

d 54 54 44 44 28 

Comparison of theory with experiment for vertical load-deflection curves 

shows that generally Eq. (9) g ives results slightly higher than experiment. 

However, the slopes of load deflection curves appear to be very close to experi- 

ment, and for this reason Eq. (9) may be useful in ground vibration studies 

where the rate is more important than the actual value. 

Similar comparisons with lateral force-deflection data and Eq. (1-g) shows 

that, on the average, predictions of side force are within the range of experi- 

mental data for cases where the inflation pressure is relatively high. This 

is because the membrane-induced lateral stiffness component is the primary 

one in this condition. In cases where the inflation pressure is low, the pre- 

dictions of Eq. (19) tend to be somewhat lower than the measured data. This 

seems reasonable, since at low.pressures the bending rigidity of the tire 

carcass becomes, relative to the membrane-induced rigidity, a more important 

factor, and this is not taken into account in this analysis. 

Torsional load deflection curves show even more hysteresis than do the 

side deflection curves. It is difficult to assign any specific torsional 

spring rate to a given set of conditions. In many cases the predictions of 

Eq. (22) are well within the hysteresis loop, particularly at the larger 

19 



vertical loads. At low vertical loads agreement between measured data and 

experiment is not as good in most cases, although it is difficult to generalize 

here. It is probable that Eq6 (22) would be suitable for some preliminary de- 

sign purposes. 

20 
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Tire A Tire B I I Tire C 

- Deflated 
--- Inflated to rated 

inflation pressure 

r 1 

Tire E-l 

T@!-GJ 

I 

4 8 o 4 8 o 4 8 o 4 8 o 4 8 
Distance from tire center line, in. . 

Fig. 13. Dimensions of test tires from NACA TN 2926 



Tire A 56-inch (56 x 16), type VII (extra-high-pressure), 32-ply-rating 
Tire B 56-inch (56 x 16), type VII (extra-high-pressure), 24-ply-rating 
Tire C 45-inch (15.50-20), type III (low-pressure), 14-ply-rat,ing 
Tire D 44-inch, type I (smooth-contour), lo-ply-rating 
Tire E-l 27-inch, type I (smooth-contour), lo-ply-rating 

T 
~-74.867.1 

Fig. 16. Photographs of test tires from NACA TN 2926. 
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Fig. 18. 
tire B. 

x 1 
Test data: 
Step loading 

0 Side 

-Manufacturer I data: 
--- 

L ,’ 
/ 0 (a) Initial inflation pressure, 

200 pounds per square inch, 
I I 

1 2 3 4 5 

Vertical tire deflection, in. 
6 7 
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Fig. 20. Vertical load-deflection experiments vs. predictions of Eq. (9) for 
tire D. 
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Fig. 21. Vertical load-deflection experiments vs. predictions of Eq. (9) for 
tire E. 
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Fig. 21 (Continued) 
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Hg. 21 (Continued) 
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Fig. 21 (Continued) 
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(a) Initial inflation pressure, 40 pounds wr square inch. 

Fig. 22. Vertical load-deflection experiments vs. predictions of Eq. (9) for 
two types of tire E. 
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Fig. 22 (Continued) 
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Fig. 22 (Concluded) 
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Fig. 23 (Concluded) 
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Fig. 24. Side load-deflection experiments vs. predictions of Eq. (19) for 
tire B. 
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Fig. 24 (Concluded) 
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Fig. 25. Side load-deflection experiments vs. predictions of Eq. (19) for 
tire C. 
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Fig. 25 (Concluded) 
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Fig. 26. Side load-deflection experiments vs. predictions of Eg. (19) for 
tire D. 

44 



I 

-3 I I 

B 

I’ 
,‘l ’ , XI isl 

I I I I 

Oartic+ Initial rartlcal 
bcruaing load tlrr dafloction 

(in.1 -- 
-& 

I-I 1; -- - 15 -_- -- 20 

h 
, 

,7 , I 
/ / // . , 

” d , 
I / 

I’ 

Predicted by 
Eq- (19) 

.b .a 1.2 1.6 2.0 2.k 2.8 
Side tb* deflection, in. 

(b) Wtial inflation preasura, 55 pounds per square inch. 

Fig. 26 (Continued) 
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Fig. 28. Moment-angle of twist experiments vs. predictions of Eq. (22) for 
tire A. 
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Fig. 29. Mment-angleof twist experiments vs. predictions of Eq. (22) for 
tire B. 
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Fig. 32. Moment-angle of twist e-xperiments vs. predictions of Eq. (22) for 
tire E. 
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